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SUMMARY

The effect of noncondensable gases on high-performance arterial heat pipes

has been investigated both analytically and experimentally. Models have been

generated which characterize the dissolution of gases in condensate, and the

diffusional loss of dissolved gases from condensate in arterial flow. These

processes, and others, have been used to postulate stability criteria for

arterial heat pipes under isothermal and non-isothermal condensate flow

conditions.

A rigorous second-order gas-loaded heat pipe model, incorporating axial

conduction and one-dimensional vapor transport, has been produced and used

for thermal and gas studies. A Freon-22 (CHCIF 2 ) heat pipe was used with

helium and xenon to validate modeling. With helium, experimental data

compared well with theory. Unusual gas-control effects with xenon were

attributed to high solubility.

Experimental observations of gas occlusions in heat pipe arteries were made

using a stainless-steel heat pipe equipped with viewing ports, and the working

fluids methanol and ammonia at two temperatures, with gas additives of helium,

argon, and xenon. Observations were related to gas transport models.

ix



Section 1

INTROD UC TION

Within the operating range of high-performance heat pipes, the arterial heat

pipe is a potentially superior device in terms of heat transfer capability and

ease of construction. Unfortunately, the open cross-section of the arterial

channel, which provides a high-conductance fluid path, is also highly susceptible

to blockage by noncondensable gases which have been intentionally or uninten-

tionally introduced into the heat pipe. Calculations indicate gas levels in the

10 to 100 parts per million range are sufficient to cause heat pipe failure by

initiating arterial depriming.

Up to this time, there was no quantitative model describing the behavior of

arterial occlusions under the diverse, non-isothermal conditions within a heat

pipe. The objective of this program was to generate valid models describing

the response of arterial occlusions to typical heat pipe dynamic transients and

steady- state operating conditions.

Analytical modeling has led to expressions describing occlusion movement in

response to fluid flow, and the growth of occlusions in response to static and

hydrodynamic pressure constraints. Expressions have been derived to estimate

gas dissolution in condensate for condensate subcooling and for interaction of

these two mechanisms in defining long-term arterial stability.

To verify modeling and experimentally define the dynamic response of an

occlusion to flow conditions within a heat pipe, a 90-cm long, 1. 27-cm inside

diameter, stainless-steel, arterial heat pipe was designed and constructed.

The heat pipe incorporated viewing ports in the evaporator and adiabatic trans-

port sections to permit visual observation of occlusion dynamics with a minimum

disruption of heat pipe function. In addition to ported pipe experiments, a.gas-

loaded R-22 (CHClF 2 ) heat pipe was used to experimentally verify a new one-

dimensional model describing the stagnant condenser zone in gas-controlled heat

pipes. This modeling was essential to estimate gas saturation levels in return

condensate. Modeling was in good agreement with experimental thermal profile.
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Experimental observations are also presented of occlusion static and dynamic

behavior in a heat pipe artery for helium and argon in the methanol working

fluid and for helium, argon, and xenon in the ammonia working fluid.

The sections which follow present an analytical summary of the work, descrip-

tion of experimental techniques, and results obtained. Symbols in this report

are defined in Section 5.



Section 2

ANALYSIS

Various simultaneous dynamic processes occurring in an operationg heat pipe

have been analyzed in terms of component and integral affects on the stability

of occlusions in arterial heat pipes. The movement of occlusions at start-up

resulting from fluid flow has been expressed in terms of pressure drops around

the occlusion and a retarding force attributable to non-equal advancing and

receding contact angles. For simplistic screened heat pipes, the secondary

wicking permeability is generally low, and only a few watts are necessary to

initiate movement. For pressure-primed heat pipes, the secondary wicking

is of higher permeability and occlusions may not move as readily. In both

instances, as the occlusion is swept towards the evaporator, an elongation may

occur as the occlusion moves into fluid regions of lower absolute pressure.

Occlusion movement is discussed in Section 2. 1. Interaction of the occlusion

with heat pipe pressure fields is discussed in Section 2. 2. Once an occlusion

is sited within the evaporator, the occlusion elongates and further deprimes

the arterial cross-section. Elongation behavior is characterized under differ-

ing boundary conditions of gas content and elongation rate.

Section 2. 3 and 2. 4 analyze the complex interaction of gas dissolution and

gas profiles in the condenser with fluid sub-cooling, based on condenser gas

zone modeling developed in Appendix A to obtain quantitative values for these

processes. That is, condensate returning to the evaporator is laden with

dissolved gases picked up in the condensation process, and is also sub-cooled

because it has resided for some time in contact with a cold condenser wall.

The subcooling concentrates noncondensable gases in the occlusion end cap

nearest the condenser. This concentration effect enhances diffusive loss of

gas into the condensate. The utility of this process is qualified by the

dissolved gases already in the liquid, and an instability factor g*:- is derived

which quantitatively predicts whether the heat pipe is in a stable mode of

operation with a sub-cooled occlusion. Experiments indicate that heat pipes

must be operated at very high power levels (without significant assistance of
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the artery for fluid pumping) to ensure diffusive collapse. At present,

sub-cooling is not practical in pressure-primed heat pipes, unless augmented

cooling is used as described by Kosson, et al (Reference I).

At low power levels, sub-cooling has no beneficial effect, and occlusion size

is primarily dominated by pressure drops, gas uptake from returning conden-

sate, and diffusive loss through surrounding fluid films. As discussed in

Reference 2, loss processes dominated by fluid diffusion require relatively

long times to reach completion.

In the analytical discussions which follow, the term "secondary wicking" is used.

This is defined as all axial flow paths, other than the artery, which pump fluid

to the evaporator, including wall wicking, stem wicking, and fillets.

2. 1 OCCLUSION MOVEMENT

When heat is applied to an initially stagnant heat pipe with an arterial occlusion,

fluid flow around the bubble in the arterial wicking produces a pressure drop.

For example, if the bubble is initially in the adiabatic section, this pressure

drop is given as

M pQ
AP 11 . (1)

Kps As hfg

The effect of this pressure differential is to move the bubble toward the

evaporator. As discussed by Schwartz, et. al. (Reference 2), a specific

minimum force is necessary to move a gas/liquid/solid interface with a given

contact angle and fluid surface tension. This is expressed in the form of a

critical force per unit length of contact as CLF = y/2 (cos Or - cos Oa) where

CLF is the critical line force for movement, y is fluid surface tension, and

Oa and 0 r are the advancing and receding dynamic contact angles, respectively.

For a general gas/liquid/solid triad, an elongated bubble is position stable

if the heat transported is less than a factor given as
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Q <A sPK h fgY(Cos - cose )s psfg r a (2)
crit M fLb r

A sample calculation was done for ammonia at 20 C. Artery radius was

0. 0794 cm, the secondary wicking was assumed to be 2 layers of 200-mesh

square-weave stainless-steel screen, with the total cross-section equal to
2 -7 2

0. 10 cm , and K equal to 6.2 (10 ) cm . Assuming a worst-case contact
ps

angle factor of 1. 0, the critical heat transfer rate was 5. 6 w for a 1. 0-cm

elongated bubble. This is a low power level. Although the values used to

establish CLF are somewhat arbitrary, the general conclusion is that

occlusion movement is possible at relatively low power levels.

While possible, movement may not occur if the occlusion elongates in response

to other system pressure constraints, or the secondary wicking has a high

K A . General pressure constraints are discussed in the following section,ps s
the effects of nonisothermality in Section 2. 4, and experimental observations

in Section 3.

2. 2 OCCLUSION BEHAVIOR IN ISOTHERMAL FLOW

In many heat pipes operated at low condensate flow and/or with small cross-

section arterial structures, return flow can be assumed in thermal equilibrium

with countercurrent vapor flow, and the dynamics assumed to be based on an

isothermal system. In this section, the response of an occlusion to flow in

an isothermal environment is discussed in terms of occlusion size change with

variation in flow or heat transport.

For purposes of discussion, consider an occlusion lodged in the evaporator

end of a simple artery as in Figure 2-1, with the heat pipe stagnant. As heat

is applied, the occlusion lengthens within the physical constraints of species

conservation and hydrodynamic pressure drops. This section describes

this interaction for gas/liquid systems which are sparingly soluble.



rc ra FLUID
PLUG

b 1

Figure 2-1. Film Recession Around an Arterial Occlusion

2. 2. 1 Vapor Phase Pressure Constraints

Once the heat pipe is transferring some minimum amount of heat, the initially

dispersed gas phase is concentrated into the condenser region and the remainder

of the pipe vapor core has a considerably lower mole fraction of gas, assuming

no axial pressure variations in the vapor phase. Condensate returning to the

evaporator carries with it dissolved gas at the mole fraction XX where T

is a factor less than 1. 0 representing diffusive loss enroute to the evaporator

and X g is the initial mole fraction at the condenser. A simple gas species

balance at the evaporator fluid/vapor interface shows that, for uniform vapor

composition, the mole fraction of gas in the vapor phase approximately equals

the mole fraction in the liquid phase. If gas law deviations are small, so

that vapor pressure may be substituted for fugacity, (Reference 4), and mass

flux rates are relatively low, then the total pressure in the general vapor phase

is given by Rauolts Law as

P P (1 -X )/(1 - X)= P
a - vs = vs (3)
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where X' = 1X . Within the arterial occlusion, under isothermal conditions,

mass transfer is slow enough that equilibrium conditions can be assumed, and

the stipulation of equal mole fraction of gas in each phase is not necessary.

Therefore,

Pb vs + (Kh Pvs ) X (4)

If the two systems were connected, there would be a small pressure difference

P - P  =(K - P  )x ' (5)b a (Kh vs g

In general, the Henry's Law constant Kh, is much larger than most usually

encountered vapor pressures so that the pressure differential is essentially

the partial pressure of noncondensable gas within the occlusion, and

P - P = K hXg (6)

Therefore, if a pore in the arterial wicking were to open, noncondensable gas

evolves into the general vapor space.

2. 2. 2 Hydrodynamic Pressure Constraints

However, the fluid film within the arterial wicking prevents this from occurring

under most conditions and also determines dynamic response of the occlusion

through hydrodynamic pressure drops created by capillarity. The pressure

drop in pumping fluid to point "2" (Figure 2-1) from the condenser is

APc2 = AP + AP 12  = a2 (7)

The pressure difference APa2 is with respect tothe general vapor phase under

the assumption of an infinite condenser radius of curvature. If it is assumed

the fluid/vapor interface within the artery at point "I" is hemispherical, then

the pressure differential between the fluid at point "2" and the occlusion vapor

core is

Pb2 = 12 + 2Y/ra (8)

2. 2. 3 Occlusion Growth on Start-up

With the basic relationships given in Sections 2. 2. 1 and 2. 2. 2, one additional

condition is necessary to complete a model describing occlusion behavior

during start-up.

7



Prior to start-up, assume occlusion introduction into the artery as the result of

burn-out, adverse tilt, vibration, etc. The initial concentration of gas within

the occlusion can be given as Pa + 2 '/r , reflecting the noncondensable gas

concentration in the vapor and the compression effect of surface tension. If

the start-up transient is rapid, the amount of noncondensable gas is maintained

constant, and for conservation of species,

S(P a + 2 Y/ra) = Pgl b (9)

Because both hydrodynamic pressure constraints and gas conservation occur

simultaneously, combining Equation 9 with Equations 6, 7, and 8, produces

o a + 2Y/ra b cl) (10)
a

This is the basic governing equation describing occlusion growth, when growth

occurs over a short period relative to the reestablishment of equilibrium

gas concentration.

Where start-up is slow, it is possible for noncondensable gases dissolved

in returning condensate to establish an equilibrium concentration of gas in

the occlusion. For this condition, the governing equations for occlusion length

are given by

2¥
Pgl r cl ()a

where Pgl now is obtained from expressions derived in Sections 2. 3 and 2. 4

for gas concentration levels in returning condensate, coupled with the gas

species equilibrium equation derived in Appendix B. Therefore

2
b V-D (C r - ) (12)

Cr is defined in Appendix B, and relates to fluid supersaturation.

The final limiting condition for isothermal growth occurs if the initial pressure

of noncondensable gas is very small compared to 2 / ra. Occlusion length under

these conditions is given by

APcI = 2Y/r (13)

From these equations, the primary effect of noncondensable gas is to

increase occlusion length above the minimum given by Equation 13. Using

8



basic assumptions of uniform condensation and evaporation in the condenser

and evaporator, and fully developed laminar tube-flow, the pressure drop

APcl from the condenser to the point "1" is given by

AP = AP + AP + AP (1- ) (14)cl cm am em e

AP = AP + AP (1 - a) (15)c 1 cm am a

AP = APc (1- 9c ) (16)

Equations 14, 15, and 16 apply when the bubble extends into the evaporator,

adiabatic, and condenser regions of the heat pipe, respectively; APcm
AP , and AP are the pressure drops in completely liquid-filled sections

am em
of the condenser, adiabatic, and evaporator regions; c' a, and qe represent

the fraction of each section containing the bubble. Equations 14, 15, and 16

have been substituted into Equation 10 resulting in two cubic equations for

bubble lengths in the evaporator and condenser sections of the heat pipes as

well as a quadratic equation for lengths within the adiabatic region. Because of

the physically acceptable solutions to e' a' and j c' all lying in the range

of zero to one, as well as limitations of the physical model, all equations which

determine Q are solved by minimizing the equations while ranging over the

interval zero to one in steps of one hundredths. A logic diagram describing

the overall numerical program is given in Figure 2-2.

Along the axial length designated Ib in Figure 2-1, the wicking must carry

liquid flow to the evaporator surfaces. The pressure drop AP12 must then

reflect conductance of this secondary flow system. This is accommodated

by ascribing to the secondary system a relative conductance Zi, defined as

the ratio of the secondary permeability to the arterial conductance. Z. is

considerably less than 1. 0 for most systems, and significant pressure drops

arise along b. Film rupture occurs in this region if the pressure differential

across any vapor/liquid interface exceeds the capillary limit 2 Y/r
c

There are two conditions to be considered when the liquid film around the

bubble breaks: (1) the fluid film ruptures from the inside to outside (Equation 8)

and (2) the capillary pumping demand first deprimes the external wicking

layer (Equation 7). If the pressure drop across that part of the artery filled

9



ESTABLISH
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I HEAT PIPE
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CONFINED TO
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Figure 2-2. Computer Logic Diagram for Occlusion in Isothermal Artery During Startup
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with liquid added to the pressure drop across that part of the artery filled with
2'

the bubble exceeds -, then the film around the bubble bursts and heat
r

pipe burnout occurs. c Conversely, if the pressure drop across the bubble-
2Y 2Y

filled portion of the artery plus-- r exceeds , then the film of liquid again
r r

ruptures but gas is forced from tfe bubble into the vapor space until a pressure

balance ensues, and burnout does not necessarily occur. If an artery film

ruptures because of Equation 8, a new, shorter-length occlusion results where

APc = ZY/ra (17)

If the fluid film "heals" and the new pressure drops prove to be compatible with

heat pipe pumping capabilities, subsequent lengths of the bubble as a function

of power may be calculated using Equation 17. The use of this equation in

describing further occlusion length change assumes that all noncondensable

gas in excess of the general vapor-phase concentration has been vented, and

the action of gas in defining occlusion length is now secondary. This may not

be a valid assumption under all conditions, but does define a limit to occlusion

behavior.

Using the model based on Equations 10 and 17, Figures 2-3 and 2-4 present

calculated occlusion lengths as a function of the fractional fully primed power

level for different levels of initial gas content, for two values of secondary

wicking relative permeability, and for the parameter r c /r = 0. 10. In
ca

Figure 2-3, the relative permeability of the secondary wicking, Zi, relative

to the artery permeability is 0. 67, while in Figure 2-4, the relative

permeability is 0. 10. In each case, the plots are parameterized in initial

reduced noncondensable gas pressure present in the heat pipe prior to start-up,

and
P

f = (18)2Y/r(18)
a

Initial occlusion length is taken as 0. 10 of the evaporator length.

The effect of increased initial gas concentration is to produce rapid depriming

by arterial fluid expulsion as gas expands within the artery. If the film rupture

phenomena occurs, then the gas content is at least partially expelled; however,

the heat pipe ultimately burns out at the same level of relative power independent

of initial gas content. The effect of increased secondary wicking permeability

11
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is to retard burn-out, but burn-out still appears inevitable as Q/Q -e 1. 0

for an isothermal system, unless Zi 1. 0, at which point, the entire load is

sustained by the secondary wicking.

2. 2.4 Gravity Effects

In all pressure constraints discussed here, gravity decreases the compressive

effect of surface tension as

2y _ 2y pgh (19)
reff ra ZYra

where h is the height of the uppermost portion of the artery with respect

to an infinite fluid pool.

2. 3 CONDENSER PHENOMENA

The condenser has influence on the behavior of arterial occlusions.

The long-term stability of occlusions is directly dependent on the quantity

of noncondensable gas picked up by fluid during condensation, and on the degree

of subcooling of the condensate. High levels of gas in return condensate

enhance the growth of occlusions by diffusion feeding of gas from liquid to the

occlusion vapor phase. Alternatively, condensate subcooling compresses

gases within an occlusion so that diffusive loss from the occlusion vapor phase

to the flowing condensate is augmented. In this section, models are derived

for gas dissolution and condensate subcooling in a gas-loaded heat pipe.

2. 3. 1 Gas-Zone Modeling

A mathematical model has been derived for the concentration and thermal

profiles of a stagnant noncondensable gas zone in a heat pipe (Appendix A

includes a detailed discussion of the model). Only axial composition changes

are assumed, and solubility of the gas in working fluid is assumed negligible

in its effect on mass transfer. The governing differential equations relate

conservation of species to axial/radial heat transfer within the heat pipe wall

and condensate film and also within any coupled coolant systems.

Because all physical properties change with temperature, the governing

second-order non-linear differential equations have been solved by a relaxation

technique such that the temperature profiles obtained at each iteration are

14



used to re-initialize diffusion coefficients, fluid density, and latent heat of

vaporization, for example, until a stable set of temperatures and concentrations

is obtained.

2.3. 2 Gas Dissolution

It has been shown in Appendix A that a condenser gas leg enhances condensation

in the diffuse transition zone that separates the primary gas leg from the

operating condenser section. Within this zone, condensation is taking place

in the presence of noncondensable gas, and it is a reasonable assumption that

noncondensable gases which diffuse into the fluid film in this area are eventually

carried towards the evaporator. If local equilibrium of gas in the vapor and

liquid phases is assumed, then it is possible to estimate the amount of gas

transported to the evaporator. In Figure A-9, Curve 3 shows the local gas

dissolution rate for the helium/Freon-22 heat pipe; gas dissolution peaks in

a relatively narrow range even for the high axial-conductance aluminum-

walled heat pipe used in these experiments.

It is a relatively simple matter to numerically integrate rate distribution to

obtain the overall dissolution rate if a numerical model is available for the

entire condenser system. However, considerable insight can be gained by a

simplistic closed-form model for the dissolution process.

In a gas-loaded heat pipe, it has been shown by Marcus (Reference 5) that

axial gas leg thermal distributions in many often used gas-fluid systems are

dominated by wall conduction into the gas zone. That is, the gas zone acts

as a fin connected to the active condenser. The mathematical models describing

temperature profiles in a fin closely describe wall profiles in gas-loaded heat

pipes. Therefore, it can be expected that fin-type equations describe vapor

temperature in the gas zone, and on this basis, a model for dissolution is pos-

sible. Figure 2-5 shows typical relations between vapor, wall temperature,

and axial position. Temperature distribution along the wall for z a z can be

approximated by the fin equation

T = T EXP ( - (z - z )/Z) (20)
w wi 0
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Figure 2-5. Representative Thermal Profiles for a Gas-Loaded Heat Pipe

In the axial zone where most gas is picked up by condensate, the vapor

temperature can be expected to roughly follow Equation 20 in functional form,

so that

T - T = AT EXP ( - (z - z)/z') (21)
v w vw

Relating the temperature difference to mass flux by Equation A-1, total mass

flow into the gas zone is

fiv = Q z/hfg (22)

The Ostwald solubility coefficient is defined as the ratio of mole concentration of

gas in the liquid phase to that in the vapor phase. Use of this factor then gives

the overall rate of gas dissolution as

n - g (23)
g hfg
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The average mole fraction of noncondensable gas X can be estimated from

system temperature limits, and because z' must be on the order of 7, it will

be replaced by Z. Considering the overall condenser system, and assuming

uniform condensation, condensate leaving the condenser has a molar concen-

tration of noncondensable gas given by

aC Xz
Cg= (24)

2. 3. 3 Condensate Subcooling

As discussed in Section 2. 3.2, gradients within the stagnant zone of a gas-

loaded heat pipe can be described approximately by fin equations. Within the

gas-free condenser zone, this is also true. Assuming the heat pipe wall is

connected to the vapor phase through a fluid film with conductance Gf, and to

a constant temperature sink through a conductance G., then the temperature

distribution along the wall is given by

* P - cosh (.Xzw)
w 2

w X cosh (zo ) + Xsinh (Xz )ow ow

The Equation A-9 has been solved with a zero-derivative boundary condition at

z = 0, and with fin-coupling boundary conditions at the gas zone interface

z = z . For the coupled gas-zone fin, Equation 20 was used.

Under steady state conditions, the local condensation rate (Figure 2-5) is

proportional to I - T , and average condensate subcooling to 1/2 (1-T ).

In Equation 25, if the hyperbolic terms are omitted, the remainder reflects

the constant gradient present in the absence of end effects. A condensation

subcooling enhancement factor can then be defined by

foz * 2 ,
1/2ow (1 - T ) dz"o w

f w (26)
c 1/2 (/X2)2 2z

ow

The factor f in closed form isc

2  sinh(2z ) (27sinh(z )
2 + 1/2 + ow ow (27)

c 2
14 z z

- ow ow
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where I = cosh (Xz ) + ksinh ( Xkzow ow

Figure 2-6 shows constant enhancement-factor profiles as a function of

P3 = G /G. and as a function of the axial dimension factor G./A K for
f i 1 w w

a condenser with length z 0 of 15 cm. An increase in the ratio G f /G i increases
of 1

end effects, as does a decrease in the axial factor VG./A K For the
1 WW

Freon-22 heat pipe described in Appendix A, the average condensate subcooling

AT is 1.8 times higher than expected without the end effect.

2.4 OCCLUSION BEHAVIOR IN NON-ISOTHERMAL FLOW

Bases for estimating gas dissolution in condensate and condensate subcooling

have been presented. These initial values for condenser concentration and

temperature are used to estimate the actual fluid concentration and temperature

levels present at the occlusion, which in general, will not be in the condenser

2.4. 1 Thermal and Mass Transfer in Arterial Flow

The gain of heat and loss of mass from a flowing tube of fluid with a permeable

outer surface is described by the same differential equation in the limit of a

sparingly soluble gas. The general heat and mass transfer model used is

shown in Figure 2-7.

As fluid moves down the tubular artery in fully developed laminar flow,

initially constant radial temperature and gas concentration profiles change

in shape resulting from loss of gas at the free interface and gain of heat by

condensation onto the free surface. Assuming no inverse-transpiration effects

occur in the vapor phase, then the dominant thermal and mass transfer resist-

ances occur within the flowing tube and the governing differential equations

are to a good approximation

Vm ) a h m  (r -) (adiabatic) (28)
a

r e eU a aUS(1 - e ) - =h r (r (evaporator) (29)
a e 18
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Figure 2-7. General Heat/Mass Transfer Model (Adiabatic Section)

In Equation 29, z is measured from the adiabatic/evaporator interface.
e

For heat and mass transfer, the factors 6 are

0 = Kf /PC ; = Dg (30)
h 2 p m g

If the following dimensionless variables are defined, a minimum number of

arbitrary constants follow.

z e U v Uh v (31)

e T m C -C h T -T
e gc gv c v

r 6 *
r r zh, vz (32)

a V r
m a

The Equations 28 and 29 are now given as

(1r) i d * u(33)

az r ar arJ

(1-r) (1- 4e) U - . r Ur (34)
e r* Or" r 
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Boundary conditions, dropping the asterisk notation, are

U- 0 r=0 0_ z (35)
ar

U = l z = 0 0 r l (36)

U = 0 r= 1 0 <z (37)

Both Equations 33 and 34 have been solved using an implicit numerical

technique. However, Equation 34 is difficult to use for general characterization

studies because the solution must be parameterized in at least the factor v.

The arbitrary constants are absorbed in Equation 33 into dimensionless factors

so that one solution to the differential equation solves all cases. With some

reservations, Equation 33 can characterize the entire heat pipe artery if a

suitable average flow velocity is used for the condenser and evaporator

sections. Alternately, it is difficult to define where z = 0 actually occurs

within the condenser based on the fact that the initial condition U = 1 is not

strictly accurate because condensate may be uniformly injected into the artery,

or there may be a peak in condensation rate as a function of position near the

gas zone interface. It is apparent that Equation 33 is most applicable to the

total heat pipe when the active condenser length is small in contrast to the

total length. The exact solutions to Equation 34 for the evaporator show this

approximate method is worst when the occlusion is very short and lodged in

the far end of the evaporator. The general effect of using Equation 33 instead

of 34 in these cases is to significantly underestimate g , a factor defined at

later in this section. Therefore, the use of Equation 33 is optimistic in

estimation of occlusion stability and collapse.

Figure 2-8 presents the solution to Equation 33 in terms of U and zh, m
The dependent variable U is the mass-flux weighted dimensionless temperature

or gas concentration. This variable was selected for presentation because

fluid mixing is likely to occur at the occlusion head as fluid diverts from the

cylindrical artery to secondary wicking. The average fluid temperature and

gas composition are the important factors in relating non-isothermal flow

behavior to occlusion stability. The numerical solution was derived using
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0. 001 step-size in z , and the radial distance was divided into 100 equal parts.

The numerical solution very closely fits the empirical expression

U = 0. 818 EXP (-7.23 z*) z: >0.025 (38)

2.4. 2 Non-Isothermal Stability

As condensate impinges on the occlusion end cap, the slightly cool condensate

creates an accumulation of noncondensable gas at point "1" in Figure 2-1,

in analogy with the macroscopic phenomenon in a heat pipe. At the same

time, dissolved gas is being transported from the condenser. The compressive

effect of temperature enhances gas removal from the occlusion by increasing

internal gas concentration which accelerates diffusive loss. In addition, if the

occlusion is elongated, diffusive loss may be occurring at an appreciable rate

through the fluid-filled arterial wall (Reference 2). Long-term operational

stability requires the diffusion and thermal mechanisms to dominate over gas

injection from return condensate.

The hydrodynamic pressure constraints given in Section 2. 2. 2 are not altered

by nonisothermal conditions. The pumping capability of the artery with an

occlusion is still solely determined by r and r . However, partial pressure

of noncondensable gas is altered.

Vapor pressure depression at the occlusion end-cap is given by the derivative

of vapor pressure with temperature multiplied by the difference between coolant

and vapor core temperature. Denoting the derivative as P', the total gas

pressure at the end cap "1" is

P 2 AP + P'AT (39)

gl ra cl 1

For a given amount of noncondensable gas, the temperature effect then serves

to compress the occlusion length. In many cases, the first two terms are close

to being equal, so that diffusion gradients are primarily determined by P' AT.

The induced equilibrium gas concentration within the liquid at end cap "1" is

oP' AT rl(z )
T c h (40)

gl RT

The factor AT accounts for the initial 6ubcooling derived in Section 2.3.3,

while 11(zh) accounts for condensate thermalization as derived in Section 2. 4. 1.
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The gas condentration attributable to dissolved material from the condenser

is

aP X zv(z* )
S zag m (41)

g2 (z + z) RT

As a relative guarantee of stability, Equation 41 must be smaller than

Equation 40 to allow diffusive collapse. If the ratio is defined as g ,

manipulation gives

C 2G X P l(z ) K A
S g2 f g a m w w (42)

gl Pfc Qn(z ) G
c h

Stability criteria are, therefore, dependent on many of the interacting

phenomena. However, the solubility does not appear explicitly. This is

related to the fact that there are two gas/liquid interfaces considered, and

the dependence cancels out when a ratio is taken.

2. 5 NON-ISOTHERMAL STABILITY CALCULATIONS

An expression g has been derived which predicts occlusion stability under

quite general non-isothermal conditions in a gas-loaded heat pipe (Equation 42).

If g is less than 1.0, diffusive collapse occurs, while for g >1, elongation

may occur depending on the absolute level of gas in the supersaturated

condensate. Calculations of the factor g are given here for the fluids

ammonia, Freon-21, and methanol.

For numerical calculations, g can be modified into a more tractable form by

using the Miller correlation given in Appendix A to express the ratio F'/Pat

with Pa assumed equal to P vs. In addition, the closed-form expression

(Equation 38) for Tm and h can be substituted into Equation 41 to give the

closed-form expressions.

1.64G X K A
f g ww (43)

gfc G. gf
C, 1

T -11.35h (PD - K/CP ) z
g c EXP f Dg K (44)
f EQ MQ
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The component expression gf has been called the fluid instability factor,

because remaining terms inEquation43 are related to specific system design.

The expression g is actually independent of arterial diameter, so that gf

is appropriate for all simple tubular arteries, within the limits defined

in Section 2. 4. In addition, the sign of the exponential factor is dependent on

the difference between mass and thermal diffusivities.

Using experimental diffusivity data in Reference 2 as a basis, Figures 2-9

and 2-10 show the dependence of gf on temperature, gas composition, power

level, and working fluid for a mean distance z = 100 cm separating the condenser

from the occlusion cap. If adequate subcooling is available to maintain arterial

priming, then Figures 2-9 and 2-10 show that increasing power level tends to

improve the mass transfer balance. The product of factors other than gf in g:

are on the order of 1. 0. Therefore, gf must also be on the order of 1.0, or

less, to ensure stability or collapse. However, in the best case, a minimum

power level of 590 watts is required for gf = 1. 0.

The fluid instability factor decreases with increasing temperature, and

is smaller for Freon-21 than for methanol or ammonia. The change with

temperature is attributable to increasing diffusion coefficients, and decreasing

thermal conductivity, while the principal variation with fluid is created by

differences in h fg/M, Dg , and K/C .

In general, however, the predominant mechanism by which gf decreases is

by a power increase. In a standard screened artery, use of this characteristic

is impractical because a power increase causes the occlusion to elongate in

response to dynamic pressure changes, as shown in Section 2. 2. However,

when the secondary wicking has a very high permeability and surrounds the

central artery, as in a pressure-primed heat pipe, then the subcooling effect

may extend the entire length of the occlusion and may be sufficient to arrest

occlusion growth.
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Section 3

EXPERIMENTAL INVESTIGATION

3. 1 EXPERIMENTAL APPARATUS

To study the stability of arterial occlusions in an operating heat pipe, a

stainless-steel heat pipe was constructed (Table 3. 1, Figure 3. 1). The heat

pipe was 91. 7 cm long, and had a 1. 27 cm inside diameter. The heat pipe

was designed with three approximately equal lengths for the evaporator,

adiabatic section, and condenser. The evaporator and adiabatic sections

contained 22 equally spaced viewing slots 2. 54 cm long and 0. 246 cm wide

which were sealed with Buna-N O-rings in compression against optical glass

window ports. Slots permitted direct observation of arterial function with

minimum disruption to heat pipe operation. In a previous program (Reference 2),

observations of arterial behavior in all-glass systems were extremely difficult

because of thermal gradients and absorption of radiant energy by the artery

structure, both of which affected bubble dissolution rates on a first-order level.

The evaporator end cap also mounts with an O-ring so that instrumentation may

be changed at the evaporator end. Both ends are of open cross-section so

that diverse wicks and arterial designs may be inserted.

The artery consisted of a screened 0. 159-cm inside diameter tube on the heat

pipe axis. The tube and a vertical web connecting the artery top and bottom

to the walls were constructed of two layers and four layers of 200-mesh

stainless-steel screen, respectively. Wicking on the wall consisted of a

single layer of the same 200-mesh screen. The pipe was heated by identical

resistance heaters on the top and bottom evaporator faces. In the condenser,

cooling was accomplished with two identical copper plates bolted to the side

faces.

The heat pipe was designed for an operating pressure of 200 psig, so that

priming characteristics of high-pressure fluids such as ammonia can be

investigated. For tests conducted in this program, ammonia and methanol

working fluids were used.
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Table 3-1

PORTED HEAT PIPE SPECIFICATIONS

Over Dimensions 2. 03 cm wide x 2. 54 cm high x 91. 7 cm long

Evaporator Length 30. 80 cm

Adiabatic length 32. 96 cm

Condenser Length 27. 94 cm

Inside Diameter 1. 27 cm

Wicking 0. 159 cm ID artery on axis. Artery and
web 2 and 4 layers of 200 mesh stainless-steel
square-weave screen, respectively. Wall
wick 1 layer of 200-mesh screen.

Observation Ports 22 slit ports, evaporator and adiabatic

Port length 2.54 cm
Width 0. 246 cm Optical glass against Buna-N O-rings

Working Range:

Temperature -20cC to 100 0 C
Pressure Vacuum to 200 psig

Thermal Insulation 0. 343 w/ 'K (based on sum of evaporator and
adiabatic length)

Condenser/Film Heat
Transfer Coefficient*:

Methanol 0. 102 w/cm2 /oK

Ammonia 0. 224 w/cm2/ cK

*:Referenced to entire inside circumference; condenser thermocouples on
centerline of top face.
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3. 2 EXPERIMENTAL TECHNIQUES

3. 2. 1 Heat Pipe and Fluid Processing

Prior to all heat pipe testing, the working fluid was degassed in a reflux

distillation column, and the heat pipe was evacuated to approximately

10 microns. Gas chromatographic analysis indicates principal impurities

in the anhydrous ammonia were about 100 ppm of N2 and 30 ppm of H 2 0.

Methanol used was Baker-certified spectrometric quality. With liquid in the

heat pipe and a 10-w thermal load, vapor venting at the condenser elimi-

nated any gases by vapor flow scavenging. Because in-situ venting

results in the cleanest system, the pipe was heavily overloaded initially, and

sufficient vapor was bled off through the venting cycles to yield a nominally

primed arterial structure with no significant pool at the bottom of the pipe.

The heat pipe was operated with an overall adverse fluid head, although the

head varied slightly along the pipe because of permanent orientations each

section assumed on welding. Relative heights are given in Table 3-2, using

the far condenser end as reference. Although the heat pipe load was determined

primarily by visual observation, post-test weight measurements of fluid place

the average ammonia load at 15 grams and the average methanol load at

16. 5 grams. Over the temperature ranges used, nominal calculated loads

are 10. 7 grams and 11. 9 grams, respectively, accounting for fluid needed

to fully saturate screens, prime the artery, develop menisci at the arterial

stem base, and form fillets within the observation ports. Excess fluid was

distributed within the arterial stem fillets and as a small puddle at the far

end of the condenser.

Excess fluid also collected under the arterial foot. When the artery was

pulled into the heat pipe, pressure contact at the base of each stem forced the

stem foot into a half-moon shape and created a v-shaped cavity at the juncture

of the foot and wall. Both the fillets and cavity served to store liquid and

provide an alternate condensate return path. The effect of these alternate

paths was very apparent in experimental testing.

3. 2. 2 Trace-Gas Experimental Tests

Two separate test sequences were used to characterize occlusion behavior

in an operating heat pipe. In the first test series, degassed working fluid
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Table 3-2

HEAT PIPE ELEVATIONS DURING TESTING

Position Elevation (cm)

Condenser Blind End 0. 00

Condenser Center 0. 06

Condenser/Adiabatic Transition 0. 12

Adiabatic/Evaporator Transition 0. 08

Evaporator Blind End 0. 15

was loaded into the evacuated heat pipe, and vapor purges were used to scavenge

trace gases and attain the operating fluid load. The number of purges were

typically between 5 and 10, and were performed in about one hour. At this

point, the system was in the most- gas-free condition possible, and any remain-

ing gases can normally not be removed by standard fluid processing techniques.

The effects of residual gases were determined both statically and dynamically.

That is, for a static test, the heat pipe was elevated to 30. 5 cm for two minutes

to completely deprime the artery. The heat pipe was then returned to horizontal,

and occlusion collapse recorded as a function of time. In the dynamic test,

the heat pipe was elevated, deprimed, returned to horizontal, the evaporator

heater was energized, and behavior of the occlusion was recorded as a function

of input power. Dynamic and static tests were performed at two different

temperatures to establish temperature dependence. Dynamic trace gas tests

are discussed with dynamic gas additive tests for continuity.

3. 2. 3 Gas-Additive Experimental Tests

Initially, a small collapsing trace-gas occlusion was generated in the evaporator.

When occlusion length was about 0. 05 to 0. 10 of the heat pipe length, occlusion

behavior was observed as noncondensable gas was introduced into the condenser.

Gas introduction was terminated when one-half the condenser had a depressed

temperature, indicating gas presence. Table 3-3 summarizes average gas

loadings for each test. Heat transport rate was then increased until occlusion

length stabilized, then input power was increased to a maximum level of
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Table 3-3

NOMINAL GAS CHARGES FOR GAS-ADDITIVE TESTS

T 1 (-15 0 C) T 2 (10°C) T 3 (15'C) T 4 (30°C)

Fluid Gas (cm 3 at STP) (cm 3 at STP) (cm 3 at STP) (cm 3 at STP)

Ammonia He 7.7 11.7

Ar 7,7 11.7

Xe 12.7 12.7

Methanol He 0. 20 0. 20

Ar 0. 20 0. 20

70 watts, with occlusion length recorded at each power level. These tests

demonstrated the effect, or lack of an effect, of a noncondensable gas zone

on occlusion stability in terms of dissolved gas in return condensate and

subcooling effects. The gases helium and argon were used with methanol

at two temperatures; the gases helium, argon, and xenon with ammonia at

two temperatures.

3. 3 TEST RESULTS/TRACE GAS EFFECTS

Figures 3-2, 3-3, and 3-4 present representative experimental data on quasi-

static collapse rates for trace gas occlusions in ammonia and methanol at

two temperatures. The occlusions collapse with a half-life of 10 to 300 sec,

depending on the amount of noncondensable gas that enters the artery on

depriming. Observations over longer periods show the total time to collapse

is on the order of 30 to 60 min maximum. These experiments are quasi-static

because, at the test temperatures of -15'C and 10C, parasitic heat loads of

about 10 and 2 watts were taken in through adiabatic and evaporator insulation

packages. The test results reflect occlusion collapse in the presence of

modest fluid transport rates, except for tests conducted at 15'C laboratory

ambient.
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Because collapse rates are slow, estimates were made of the noncondensable

gas level remaining in the heat pipe. As shown in Figures 3-2, 3-3, and 3-4,

the occlusion initially collapses rapidly until the occlusion internal gas pressure

is balanced by the surface tension driving pressure. Beyond this point, the

occlusion collapses as the result of gaseous diffusion through the arterial

envelope. As discussed in Reference 2, the differential equation describing

diffusion collapse predicts an exponential time dependence, and data support

this conclusion. At the initiation of diffusional collapse, the pressure

equilibrium is

2YgP r pgh - AP P > 0 (1)
gy r cl gy

For a parasitic heat load of 2 watts at 10 C, APcl can be neglected. In the

tilted and deprimed condition, the internal arterial gas pressure should reflect

the order of magnitude of impurity gas within the heat pipe vapor. The partial

pressure of gas can be estimated as

P a
gy b(2)

gv Ic a e

With these assumptions, the partial pressures of gas in ammonia and methanol

are on the order of 100 and 12 microns. In the vapor phase, the relative

impurity levels at 10'C are 23 and 250 ppm, and if the principal impurity is

assumed to be nitrogen, equilibrium liquid impurity levels are 0. 015 and

0. 004 ppm, respectively.

The 100-microns gas partial pressure in ammonia is not indicated in any way

by a colder gas zone, to the limit of digital equipment used (0. 1 C). The

12-micron estimated gas partial pressure in methanol may produce a small

gas leg (-l cm) at power levels of 2 to 10 watts with a 0. 1 to 0. 2 C overall

gradient. A slow gas build-up over several hours was observed with methanol

and it may result from the large number of O-rings which allow diffusion of

air into the experiment. However, methanol collapse rates reflect data taken

immediately after vapor purging.

Reference 2 presents an expression for calculating the half-life of elongated

occlusions as

0. 693 r2 n (1 + )
T a ra (3)

!/2 2D' (I-F)
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where 6 is the artery envelope thickness, D' is the effective gas/fluid diffusion

coefficient, and (1-F) is the concentration gradient factor. From Figures 3-3

and 3-4, half-lives of 240 and 70 sec are representative of collapse rates

following the initial rapid length change. The effective diffusion coefficient

for an arterial wall of 2 layers of 200-mesh screen is about 0.425 Dgf
(Reference 2). At 10 0 C, the heat pipe is transporting about 2 watts of parasitic

input; if the modeling of Section 2 is correct, the gas content in the evaporator

vapor space should be low because of sweeping action, and the concentration

factor should be close to 1. 0. On the other hand, if the vapor phase has an

axially uniform gas content, then the rapid occlusion shrinkage to half the

artery length implies (1-F) - 1/2. Using both assumptions, Table 3-4 presents
1

a comparison of calculated values of the fluid property factor aD with values
aDgP

obtained experimentally (Reference 2) for argon and helium. Nitrogen is the

most probable impurity in both the ammonia and methanol experiments, and has

properties intermediate to argon and helium.

The calculated venting parameter,, is closest to the experimental values

when (1-F) = 1.0 for methanol, and (1-F) = 1/2 for ammonia. Although

order-of-magnitude agreement for the simple model is obtained without making

this distinction, adjustment of the diffusion factor may have a physical basis.

The vapor density of ammonia is about 100 times the vapor density of methanol

at 10'C, and therefore, the vapor Reynolds numbers are inversely related,

creating much more vigorous sweeping action with methanol than with ammonia

at this temperature. The presence of this vapor-related effect is also indicated

by the collapse data taken at -15 C with ammonia (Figure 3-2). At -15C:, the

vapor pressure of ammonia is only 2. 3 atmospheres, and the implied venting

parameter is approximately 44. 000 sec/cm 2 if (1-F) = 1. 0. The experimentally
2

measured values for argon and helium are 70, 000 and 40C, 000 sec/cm

Therefore, at a lower vapor pressure. the more theoretically satisfying choice

(1-F) - 1.0 is justified by experimental data.

In general, the calculated values of i/a Dg are low for these quasi-stagnant

tests even in the case of a sufficiently high vapor flow Reynolds number. This

results in part from fluid flow in the arterial envelope causing some radial

mass convection, which augments diffusion, and causes D' to increase.
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Table 3-4

COLLAPSE RATE CORRELATION OF VENTING

PARAMETER AT 10 0 C
gi

Fluid Experimental Venting Parameter Implied Value Implied Value

Argon 2 Helium (1-F) = 1 (1-F) = 1/2
(sec/cm ) (sec/cm2 ) (sec/cm2 ) (sec/cm2)

Ammonia 33, 100* 275, 000: 211, 000 106, 000

Methanol 75, 000 200, 000 61, 000 30, 500

*Values extrapolated from low temperature data in Reference 2.

Accepting some error from uncertainty in the factor (1-F)D , agreement is

adequate that collapse rates at low power levels can be estimated by Equation 3.

An adequately low power level is defined such that the condensate is not super-

saturated with gas, and P is positive and non-negligible. The factor

(1-F) is

P

I-F gY (4)
P +P

co gy

where Po is the general vapor phase gas partial pressure at the outside

envelope of the artery.

3.4 GAS ADDITIVE TESTS

Figures 3-5 through 3-8 show the effect of heat transfer on occlusion stability

for the working fluids ammonia and methanol with gas addition as described

in Section 3. 2. 3. Occlusion response to power is also shown for degassed

working fluid.

To power levels from 10 to 20 watts, heat transfer does not materially reduce

the capability of an ammonia occlusion to collapse with the secondary wicking

and fillets present in these experiments. For methanol, a similar limit to

approximately 5 watts is shown. Beyond this range, the occlusion lengthens

with power increase and stabilizes at a new length. The small length change

for an ammonia occlusion at low power is not completely understood. This

behavior is partly attributable to the non-uniform elevations of Table 3-2,
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Figure 3-5. Arterial Depriming with Heat Transfer for Ammonia at -150 C
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Figure 3-6. Arterial Depriming with Heat Transfer for Ammonia at 10 0 C
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Figure 3-8. Arterial Depriming with Heat Transfer for Methanol at 15 0 C
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coupled with the fluid overload. Helium and argon in the condenser do not

materially alter occlusion growth rates with power, while xenon very signifi-

cantly increases sensitivity to power increase. As discussed in Section 2,

gases with low diffusion coefficients, such as zenon, are carried further

distances with condensate than high diffusivity gases such as helium. Argon

is intermediate in behavior. These transported gases then evolve into the

occlusion, lengthening it as described by equations in Section 2. However, the

following sections show that the absolute quantity of gas transported should

have been negligible in all cases, and xenon behavior is anomalous. Xenon

gas profiles in R-22 tests described in Appendix A were also anomalous.

3.5 INTERPRETATION OF EXPERIMENTAL DATA

In Section 2, a model was derived for diffusive loss of gas from tube-flow.

Applied to a heat pipe artery, this expression is equivalently given as

pg gz g EXP 11.35 PDgihfgZ) (5)
g2 gc z+) z (

where Pg2 is the equilibrium gas partial pressure at the occlusion, Pgc is the

partial pressure of gas in the condenser over the zone of mixed condensation,

and Q is the heat-equivalent fluid transferred by the artery, subtracting from
a

the gross transfer rate all heat transferred by secondary wicking. This equation

will be used to show that dissolved gases were almost completely lost in the

experiments discussed. In Equation 5, z is the distance between the gas uptake

zone and occlusion head. Because most of the data show no effect of trace

gases or gas additives, these data were correlated with the simple model

2Y
Sr pgh (6)

cl r

Figures 3-9 and 3-10 present data correlation on this basis. For both ammonia

and methanol, the fluid conductance of the secondary wicking is indicated to be

5 to 10 times that of the artery. Independent calculations substantiate that the

stem fillets and pool, transfer fluid to the occlusion head at about the implied

rates. This fluid shunting has a significant effect on gas transport.
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In Equation 5, Qa is on the order of 0. 125 Q TOT Substituting experimental

values for the factors in 3.5 (Reference 2), the gas pressure Pg2 at 100 to

15 C is

Pg2 522 EXP (- c z/QTOT) (methanol) (7)

Pg2 - 17, 000 EXP (-cz/QTOT) (ammonia) (8)

The interfacial conductance G. has been taken to be 0.57 w/cm/*K, and the
1

average condenser partial gas pressure has been taken to be 25%0 of the

maximum partial pressure. The maximum condenser gas leg AT was on the

order of 30 to 5 0C. The coefficients c. are

Methanol at 15°C: He/Ar = 12. 2/4. 25

Ammonia at 10 0 C: He/Ar/Xe = 11.6/16. 8/3. 94

For Pg2 to be relevant, it must be on the order of 10% of 2 Y/r a . For z on

the order of 80 cm, as typical of this experiment, the maximum value of

Pg 2 (Xe) is about 0.,5 dyne/cm 2 at 30 watts, and 89 dynes/cm at 60 watts.

The factor 2 Y/ra is about 500 dynes/cm 2 . Therefore, in all cases, at low

power, the effects of gas dissolution should be small. This was observed for

all combinations, with the exception of xenon, and possibly argon, at 10 0 C

(Figure 3-6).

The unusual behavior of argon and xenon appears to be related to the high

solubility of these two gases in the working fluid, together with a pressure-

dependent phenomena discussed in Section 3. 3. The behavior of argon

(Figure 3-6) could be interpreted as a vapor-phase effect where an increase

in axial vapor velocity sweeps a stagnant gas layer away from the artery and

allows gases within the condensate and occlusion to escape to the vapor phase.

Where gases are not completely lost in transit to the occlusion, the expression

for occlusion length derived in Appendix B is applicable under conditions where

assumptions are valid. Utilizing expressions of Section 2 for gas transport

and occlusion internal pressure, ib is given as
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2 j 0.818 P ( -) EXP(-11.35PDg h z/MQ
vb gc zo+Z gi f (9)

b D 3
rY - pgh -AP
r cl

a

As discussed in Section 2 in relation to g*, gas solubility does not appear

explicitly in this occlusion stability criteria. This model was not compared

to experimental data because of uncertainty in estimating the flow velocity

v for the experimental system used. In addition, gas transport effects have

been shown to be small, in agreement with the order-of-magnitude argument

developed.
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Section 4

CONCLUSIONS

In a previous investigation (Reference 2), the stability of an occlusion in a

static heat pipe was characterized. As long as the following occurs, an

occlusion collapses, even if slowly.

21y _ pgh
r

a

The collapse rate depends inversely on the artery diameter squared and the

internal partial pressure of gas, and directly on the solubility-diffusivity

product, aD g. In a dynamic system, the corresponding stability criteria are

2Y pgh + aP
r cl

a

f ib dz < 0
0 ar

The first is a simple hydrodynamic pressure constraint. The second requires

the integrated flux of gas into the occlusion to be either zero or negative,

i. e., the occlusion cannow grow with time. Expressions have been developed

which predict whether the second criterion is met. In general, these

expressions, (e.g., Section 2, Equations 9 through 13) depend.on many factors

because the occlusion is now in mass communication with the condenser,

and the entire heat pipe environment. Maximum diffusivity is still desirable.

In all cases, however, the criteria do not have solubility as an explicit factor.

Although collapse rate is still proportional to solubility (Section 3, Equation 3),

a high solubility is not required for diffusional collapse. Indeed, in dynamic

systems, high solubility gases have exhibited very peculiar behavior.

Within the limit of highly soluble gases such as xenon, and in some cases argon,

the well-defined gas zone within a gas-loaded heat pipe spreads so that the

return condensate is significantly enriched with dissolved gas and occlusions
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are extremely unstable. In addition, conflicts between experimental data and

analysis indicate that, for high pressure fluids, significant gas gradients at

low power occur within the vapor core surrounding the artery. These gradients

retard gas loss by the artery and therefore accentuate occlusion problems.

With low solubility gases such as helium, the presence of significant amounts

of gas in the condenser does not affect occlusion stability. Occlusion stability

in these cases is dominated by hydrodynamic pressure drops. At low power

levels, occlusions will collapse. Above a critical power level, occlusions

systematically lengthen in response to heat input until secondary wicking cannot

sustain the fluid pressure drop and the heat pipe burns out. In general, there

are no fundamental improvements in gas occlusion resistance in the dynamic

system. Condensate subcooling by condenser function is not adequate to collapse

occlusions, and fluid flow around the occlusion, which augments diffusion,

occurs at the expense of a large hydrodynamic pressure drop.

Several options are possible which individually or collectively can reduce

failures of high performance heat pipes from arterial malfunction. Several

are already being investigated.

First, it appears possible that forced cooling of condensate can significantly

accelerate the loss of noncondensable gas by compressing the gas via the

Clapeyron effect. By suitable arterial design, it also may be possible to force

the gases to vent through the arterial skin. By leaving the arterial ends open

and increasing artery diameter, high gas-resistance can be achieved in a high

performance pipe. However, the larger diameter generally precludes l-g

testing. By forming many arteries into a bundle, high redundancy can be

achieved along with some subcooling. By using large axial grooves, or electro-

static fluid pumping, fluid structures with open faces which will not form

occlusions can be used. Finally, most arterial systems benefit from a warm-

up period at a low power such that noncondensable gases are segregated to the

condenser and the artery can expel gas by simple diffusion.
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Section 5

SYMBOLS

2
A secondary wicking cross-section, cms 2
A wall cross-sectional area, cm

A vapor core cross-sectional area, cm

C total vapor concentration, g-moles/cm 3

Cg. initial gas concentration in condensate, g-moles/cm 3

Cg 1  induced gas concentration in liquid, g-moles/cm3

Cg 2  gas concentration in liquid due to transport, g-moles/cm

C specific heat, joules/gm/*K
2

Dab vapor phase binary diffusion coefficient, cm /sec2

Dgi diffusion coefficient for gas in liquid, cm /sec

f dimensionless gas pressure

f sub-cooling enhancement factor
c

G per-unit-length conductance, w/cm/oK
(subscript f = fluid film, i = wall/jacket interfacial conductance,
j = jacket/coolant interfacial conductance)

hfg latent heat of vaporization, joules/g-mole

Kh Henry's Law constant, dynes/cm 2

K liquid thermal conductivity, w/cm/*K
2

K permeability of secondary wicking, cm
ps

K wall thermal conductivity
w

a adiabatic length, cm
a

Bb occlusion length, cm

ic condenser length, cm

ib occlusion length, cm

Se evaporator length, cm

I initial occlusion length, cm
0

M fluid molecular weight, gms/g-mole

n v vapor flow rate, g-moles/sec

n gas flow rate, g-moles/sec
g 2

p total heat pipe internal pressure, dynes/cm
a
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Pb occlusion total internal pressure, dynes/cm 2

P critical point vapor pressure, dynes/cm2

P gas partial pressure, dynes/cm 2

g
P gas partial pressure after occlusion expansion, dynes/cm 2

gl
P reduced vapor pressure, P /P
r vs c 2

P vapor core saturation vapor pressure, dynes/cm
P' temperature derivative of vapor pressure, dynes/cm 2 /K

Q heat transfer rate, watts

Q G ATw, w/cm

aQ maximum heat transfer rate, by artery alone, watts

q local condensation rate, watts/cm

qco condensation rate with no end effects, watts/cm

r a artery radius, cm

r critical capillary radius, cm

R gas constant

T temperature, *K

(subscripts v = vapor, w = wall, j = condenser jacket,
c reference sink temperature)

T* (T - Tc)/(T - Tc)

T wall temperature at z =z
wl o

T critical temperature, *K
cr

Tr reduced temperature, T/Tc
T vapor temperature equivalent to P s, K

T wall temperature at z =z , *K
zm m

V centerline fluid velocity
m

X mole fraction noncondensable gas in vapor phaseg
Xg mole fraction noncondensable gas in liquid phase

z axial measure, cm

z fin factor describing vapor temperature profile, cm

z fin factor, VA K /G. , cm

zm total condenser length, cm

z gas zone boundary, cm

Z. pe rmeability-area product of secondary wicking divided by product
Lur priuiiry wicking

z* dimensionless axial distance, z* = z/

z* z
ow o

z z/z
r m54
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a Ostwald coefficient

P G./Gf

Ys fluid surface tension, dynes/cm

AP pressure difference, dynes/cm2

AT* dimensionless temperature difference at z =z
vw

Sratio of gas partial pressure to system pressure in a static heat pipe

h, thermal or mass loss factor for tube-flow
h, m

m thermal and mass diffusion coefficients, cm 2 /sec

Oa advancing contact angle, radians

ee equilibrium contact angle, radians

Or receding contact angle, radians

X ST+P

S viscosity, poise

E d (n Pr)/d T r

IE dE/d Tr

p fluid density, g/cm 3

Oa molar flux of vapor, moles/cm-/sec

Cb molar flux of gas, moles/cm2/sec

fraction of heat pipe section with occlusion (subscript c = condenser,
c,a,b a = adiabatic, e = evaporator)
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Appendix A

GAS PROFILE CHARACTERIZATION

The maximum amount of gas that can be dissolved in returning condensate is

determined by interactions occurring in the diffuse frontal zone of the stagnant

gas plug. In this region, condensation is occurring in the presence of

noncondensable gas, and it can be assumed most gas is picked up in this region.

The physical model developed at DWDL for characterizing heat and mass

transfer in the gas-rich zone is shown in Figure A-i. A section of the heat

pipe and heat rejection system is shown with a superimposed 4-level nodal

system. In this multilevel one-dimensional model, the vapor temperature is

assumed identical to the condensate film surface temperature. The wall is

connected to the fluid/vapor interface and a cooling jacket through conductances

Gf and G i . The conductance Gi may be nonlinear if the coupling is by radiative

transfer. Reflecting the model one-dimensionality, the interface conductances

are effective total conductances per unit axial length; that is, the conductance

is in units of watts/cm/OK. If the heat pipe is coupled to another heat pipe

or a coolant loop, then a fourth level of nodes from T. to T is required, with
3 c

an interface conductance G..

Differential equations involving the position-dependent temperatures T , Tw'

T., and T are derived. The algorithm for solving this non-linear equation3 c
system is given in Section A. 3.

A. 1 VAPOR PHASE MASS TRANSPORT EQUATIONS

Assuming a heat pipe of uniform cross-section, the transport equation will be

solved for diffusive inviscid flow through a stagnant gas plug. That is, both

axial and radial pressure gradients are neglected, and flow and temperature

are assumed uniform across the cross-section. In terms of these model

boundary conditions, the analysis is similar to that of Marcus (Reference A-i).

H-owever, certain simplifying assumptions used by Marcus have not been made

here, and the mathematical approach is considerably different.
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Conservation of working fluid vapor (denoted species A) at any cross-section

results in the coupled mass-transfer/heat-transfer equation

d Gf (T - Tw)da _ vT(A-I)
d A hfg

z vfg

where 0 denotes molar flux and T and T represent the vapor and wall
v w

temperatures respectively. For uniaxial flow in which cb - 0 (b denotes

insoluble, noncondensable gas); mass flux of species A is given as

CDab dX Xa/dz (A-2)

(a (1 -X) a

so that

d (CD abdX /dz Gf (T - Tw)
d -X A h (A-3)

dz I -Xa A v hfg

It would be preferable to express the derivatives of mole fraction on the left-

side in terms of T because a second-order equation in T is desired. This
v v

is entirely possible if the change of variable U = in (Xa) is made. Assuming

the ideal gas law holds, then

P
U = In(Xa) = in(Pr) + n c (A-4)

vs

where P is the reduced vapor pressure at a given axial position and P isr vs
vapor pressure in the heat pipe vapor core.

The first derivative of U with respect to z is expressible as

d(.nPr) d TdU d (in P) nP r r (A-5)
dz dz r dT dz

r

61



where T is the local reduced temperature. The function U is defined in this

manner to allow use of the Miller Correlation, a very accurate vapor pressure

correlation given as (Reference A-2)

In P -. 303G' T + g + 1 - T) 3 ) (A-6)
r (_ IT _r r r r

where G' and g' are related to the critical temperature and pressure and the

vapor pressure at the normal boiling point. Taking Equations (A-3) through(A-6),

standard manipulations transform(A -3) into a differential equation in T
v

d2T T -T Tc dT
v a C + E V

2 + T + + -Xdz
dz cr a

cr f v wa/
A hfg CDab (A-7)

The dimensionless temperature T is defined in Section 5. The factorv
T /2T results from the derivative of C Dab with respect to z by assuming acr v ab
Chapman-Enskog form for the factor, that is, C Dab is proportional to /Tv

The nonlinear differential equation (A-7) relates vapor temperature to wall

temperature Tw and axial position z.

A. 2 DEFINITION OF AXIAL WALL CONDUCTION

The thermal conductivity of common fluid-saturated wicking materials is low

relative to the thermal conductivity of typical heat pipe extrusions, and/or the

cross-section of such wicking is small compared to the extrusion cross-section.

For this reason, it is reasonable to assume that the fluid film acts primarily

as an interfacial resistance and as a vapor pressure determining factor.

Assuming no radial or circumferential gradients within the heat pipe wall, a

heat balance on a wall slice 6z thick, as 6z approaches zero, yields the

differential equation
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dT G Gf
w = 1 + f)T T - T (A-s

dz 2 G. w G. v
dz 1

w

For this development, the conductance G. is assumed constant over the

condenser length, although it is not a strict necessity.

An identical approach is used for the jacket cross-section, in the case of

coupling to a coolant system.

d 2G. T, GGw 1 + T. - T - T (A-9)

z2 G. w (G c
dz 1

The equations described in this section, coupled with equation (A-7) completely

describe the temperature profiles within the stagnant gas zone of a gas-loaded

heat pipe.

A. 3 NUMERICAL TECHNIQUES

Equations A-7, A-8, and A-9, describing the interaction of T v , Tw, and

Tj, respectively, are solved by applying the method of finite differences to the

differential equations. A nodal system is set up as shown in Figure A-i, over

both the gas-blocked zone and the freely condensing zone. The boundary

conditions are

dT dT dT.
v _ w _ __- 0 for z o and z (A-10)

dz dz dz m

dT dT dT. dT.
w _ w = (A-11)

dz - dz + ' dz dz +
Z=z z=z Z=Z =

T = T z S z (A-12)
v a o

T = f (Tw, 9 a )  z > Zo (A-13)

Tv , T w , Tj continuous at z = z o  (A-14)
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The internal boundary z separates the gas-loaded zone beyond zo from the

freely condensing zone 0 < z< z o . At the interface z = zo, Equations A-11 and

A-14 specify continuity of axial heat flux and temperature.

Computational molecules used for the finite difference method are of the standard

2-point and 3-point types with respect to discretizing dT/dz and d2T/dz 2 . The

4-level system of coupled equations is solved by Gauss-Seidel iteration with

successive over-relaxation (SOR).

Assuming irreducibility of the matrix system describing the nodal network, it

can be shown that the SOR technique will converge to a true approximate

solution of the differential equations if the temperatures T v(z) are continuously

decreasing at all points from z=z to z= m, when the Miller correlation is used

as the analytic tie between T and the vapor pressure. The requirement of T

continuously decreasing is physically consistent, and a numerical algorithm

guaranteeing this condition is straightforward.

Other numerical techniques may be equally satisfactory to solve the system of

differential equations. The SOR technique was chosen as a compromise between

conservatism in stability and computational speed.

To calculate concentration and temperature profiles for a given charge of non-

condensable gas, a value of z is estimated and an iterative solution of the

equations is generated. The moles of gas are calculated as the integral

Zm

N (Pa - P (z))dz (A-14)
J RT (z)
zo v

The value of the integral is compared to the input moles, and a second estimate

made for the proper value of z . The value of z is iterated until calculated

gas content is within a small increment 8 of the known moles of gas. The heat

transferred is calculated as the integral over axial length of the radial heat

transfer across the final conductance interface G..
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A. 4 MODEL COMPARISON/FEATURES

The one-dimensional model described in previous sections differs from the well-

known model described by Marcus (Reference A-i). The primary difference is

in not restricting the wall and fluid film temperatures to identical first and

second derivatives. This allows the modeling of high-resistance condensate

wicks as in heat pipes with low fluid conductivity, e. g., cryogenic heat pipes

or organic fluid heat pipes. Without this restriction, it is necessary to solve

the axial conduction problem in the freely-condensing zone as well. That is,

the gas plug acts as a thermal sink and there is a very significant augmentation

of the condensation rate immediately in front of and within the gas zone. This

is discussed in Section A. 6. The overall observable result is a large depression

of wall temperature in the freely condensing zone, so that, at first glance, it

would appear the gas zone extends much further than is actually true. In terms

of gas dissolution analysis, it is very important to properly characterize this

interface area so that accurate estimates of gas dissolution phenomena are

possible.

The finite difference method used for calculation is useful for interfacing with

nodal thermal analyzer programs to obtain the most accurate model of extended

surfaces interacting with gas-controlled heat pipes. In addition, the four-level

nodal network is very useful for characterizing the overall conductance of heat

pipe joints where gas is present. In this case, Tc represents the vapor

temperature of the coupled heat pipe.

A. 5 EXPERIMENTAL VERIFICATION

Verification of modeling was done with the Freon-22 (CHCIF 2 ) heat pipe

described in Table A-i. The heat pipe was 96. 5 cm long, 1. 05 cm inside

diameter, and had a wicking consisting of one layer of 200 mesh stainless

screen and one layer of 105 mesh stainless screen. The condenser was

27.9 cm long, and was coupled to a commercial fluid cooling system via a

cooling bar. The cooling bar and condenser were initially ground flat to

ensure uniformity of interfacial heat transfer coefficient. The bar and heat

pipe were coated with thermal grease, and coupled together with a 0. 0203-cm

interfacial acetate sheet for ease in thermal resistance assessment.
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Table A- 1

GAS-LOADED HEAT PIPE SPECIFICATIONS

Physical Dimensions 1.27 cm sq aluminum extrusion, 1. 05 cm
inside diameter, length = 96.5 cm

Wicking 1 layer of 200 mesh stainless screen plus
one layer of 105 mesh screen on I.D.

Condenser 27. 9 cm long, one face ground flat for
coupling to coolant bar

Heat Rejection System Coolant bar coupled to extrusion face with
interfacial 0. 0203-cm acetate film

Gas Charges 12. 2 cc (STP) of helium and xenon

The heat pipe was initially operated over the coolant temperature range -400

to 6 0 C and 0 to 50 watts, at a reflux head of 4.65 cm, to thermally characterize

the heat transfer interfaces at the condensate film, at the pipe/bar interface,

and at the bar/coolant channel interface. After thermal characterization, the

heat pipe was alternately charged with 12.2 standard cc of helium and xenon,

and operated at the same reflux head at coolant temperatures of -41* to 6°C.

The temperature profiles established in the condenser were recorded from

thermocouple measurements of wall temperature at 2. 54 cm intervals.

Figures A-2 through A-5 show the profiles recorded with each gas at the two

temperatures. The blind or closed end of the heat pipe is at x=0, and vapor

flow enters the condenser at x=ll in.

The wall temperature, Tw, is defined as

T -T 
T = w c 0 < T <1 (A-15)

w T -T w
vs c

Figure A-6 shows actual and predicted performance for the heat pipe when

operated at -41 0 C with helium, at two power levels. Figure A-7 shows the

same performance predictions for xenon. Behavior of the ht iuI1-Iaded

pipe is explained well by theory. At the higher power level, the discrepancy

of the model and data over a small range is ascribed to chilled condensate

flowing countercurrent to vapor in the reflux orientation. However, radial
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Figure A-2. Experimental Data on the Effect of Helium on Condensation at Low Temperature
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gas gradients could cause such a depression as well, and it is not possible

to separate these phenomena at this time. Agreement with xenon data is very

poor. This model failure has been identified as resulting from the high

solubility of xenon in CHC1F 2 . However, the subject is beyond the scope of

this work and will not be discussed. It will be assumed that all gas/liquid

combinations discussed are of very low mutual solubility.

Figure A-8 shows the total temperature difference between the heat pipe adiabatic

vapor core and the coolant at the two test temperatures. Again, agreement

of theory with helium data is satisfactory. However, model calculations for

He thermal profiles at 6 0 C are not in as good agreement with data as at the

lower temperature, implying solubility increase with temperature has qualified

the assumption of an insoluble gas. The behavior change is shown in Figure A-9,

which summarizes the temperature difference between the blind end of the heat

pipe and the coolant, as a function of Q. The helium data at low temperature is

described well, while the high temperature data is poorly explained, and the

xenon data is completely at variance with the model.

In summary, the one dimensional model describes experimental data where

gas solubility is adequately low.

A. 6 GAS UPTAKE BY CONDENSING FLUID

Dissolved gas in condensate return is intimately coupled to condensation

characteristics at the gas zone interface. Sections A. 1 through A. 5 develop

an experimentally supported theory describing heat and mass transfer in the

gas zone when gas solubility does not significantly influence mass transfer.

Using the developed model, calculations of gas uptake have been made.

Immediately within the gas zone, there exists a region of high condensation

rate where gas dissolution is occurring. For the research heat pipe described

in Section A. 5, the interplay of condensation and heat conduction is shown in

Figure A-10. The factor qc /qco is the ratio of local condensation rate to

condensation rate in the gas-free zone with no end effects present. The axial

length has been made dimensionless through division by the total condenser

length.
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Although the gas front is at xr = 0. 51, the actual peak in condensation rate

occurs within the gas zone at xr = 0. 49. The condensation rate is enhanced by

a factor (in theory) of 2. 6. This is a remarkable and unexpected situation.

However, the reason for this behavior is not difficult to understand. In the gas

interface region, the one dimensional heat conduction process is suddenly a

two-dimensional process due to-axial conduction to the chilled gas leg augmenting

the standard conduction process perpendicular to the heat transfer interfaces.

Therefore, the wall temperature is depressed and condensation onto the fluid

film increases considerably.

Also shown in Figure A-10 is the condensation rate indicated by using experimental

wall temperatures and the theoretical vapor temperature shown in Figure A-5.

The general shape of this curve is in agreement with the totally analytic

estimate, and condensation in the stagnant gas leg extends over approximately

the same zone as predicted by theory. It is believed the high apparent conden-

sation rates for the experimental data are due to return condensate flow, since

testing was done in reflux. The actual wall temperatures reflect not only local

condensation but fluid flow from cooler areas at higher elevation. If radial

concentration gradients existed in this diffuse zone, however, it would not be

possible to distinguish in this experiment whether the temperature depression

was due to fluid flow or a radial gas layer. At present the fluid flow effect

appears to be in better qualitative agreement.

In the modeling of gas uptake, it is assumed that, in the gas contaminated zone,

condensate leaves the zone with an equilibrium amount of noncondensable gas in

solution, and that this fluid mixes completely with condensate from the remainder

of the condenser. The total amount of gas taken into solution is calculated by

integrating over the condensation profile using the local gas partial pressure to

determine gas uptake through Henry's Law. The local rate of gas dissolution

for this heat pipe is shown in Figure A-10 as Curve 3.
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Appendix B

STEADY-STATE OCCLUSION LENGTH

Under isothermal conditions, mathematical models of occlusion length are

possible for the quasi-steady-state conditionwhere the uptake of noncondensable

gas by the occlusion from condensate equals the diffusional loss rate through

the radial fluid film around the occlusion. That is, there is a dynamic equilib-

rium between gas input and loss mechanisms. The model derived relates

gas input to film diffusion through the artery envelope and to the available

occlusion length for diffusion, b,' under isothermal conditions.

The model used is shown in Figure B-1. Dissolved gases are transported to

the end cap and axially through the fluid film by condensate flow. Because the end

cap defines an area of flow stagnation, it is assumed that dominant communication

of condensate with the occlusion core is byway of contact over the cylindrical

surface. Because no pressure drops are probable within the occlusion under

isothermal conditions, the partial pressure of noncondensable gas within the

occlusion is a constant and the internal surface of the fluid film is at a

saturation concentration Cg b . The external film surface is at equilibrium

with gas content in the vapor phase at Cgf. Because the fluid film surrounding

the occlusion is actually a lattice filled with fluid, it can be assumed that plug-

flow occurs in the porous envelope, and diffusion of gases can be treated with

a Cartesian coordinate slab model. At z = 0, the condensate is gas-saturated

at a level Cgr' equivalent to mole fraction nXg , as defined in Section 2.

If the coordinate system shown in Figure B-l is adopted, and axial diffusion

neglected, then conservation of dissolved gas in the liquid yields

8C D 82 C

a _ D g (adiabatic) (B-l)
az v y 2

(1b- z) 8C _ 2C 82C

(b Z) aD C (evaporator) (B-2)
ie 8 z m Y y

79



Cg = Cgf

C =C r
Cg = Cgb g gb+

POROUS ENVELOPE

PRIMED ARTERY CORE

Figure B-I. Steady-State Occlusion Model Incorporating Gas Diffusion

where C denotes gas concentration and v is the average fluid velocity in the

occlusion film envelope. Flow velocity vm is the fluid film velocity for the

case that the occlusion length equals e , the evaporator length. The diffusion

coefficient D' is an effective value reflecting the lattice structure of typical

arterial walls (Reference B-1). An analytic solution to Equation B-l is
possible by separation of variables, and a stability criterion can be developed.
The solution shows interaction of flow and diffusion, although it is not strictly
valid for the evaporator. A dimensionless concentration is defined as

C -C
= C (B-3)

gb Cgf

where subscripts b and f correspond to the internal and external film surfaces,

respectively. The solution to Equation B-1, with C; = C; at z = 0, is composedr
of a steady-state solution plus a transient series solution.
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C; =-_ + 2 >o C (1-(-1)N) + (-1)N EXP(-N 2 wz) sin(Nrry/6) (B-4)
N l N
N= I

where 6 is the fluid film thickness and the reciprocal relaxation length

c = T2D'/v62 . At steady-state, all diffusive mass flow of noncondensable gas

to the occlusion must sum to zero. The overall rate over the cylindrical section

can be found by evaluating the diffusion gradient of Equation B-4 at y = 6, and

then integrating over the range 0 5 z 1 b. Setting this integral equal to zero

yields the following equality for a diffusion-stable occlusion which is neither

growing or collapsing with time.

- Lr (1 - (-1 -1 (1 - EXP(-N 2  b ) )  (B-5)
N= 2

Equation B-5 provides a relationship between the factor w b and C . Cr is

given by

C -C
C gr gf (B-6)
r C -C

gb gf

Table B- 1

DIMENSIONLESS LENGTH wb vs C"
b r

C
r b

1. 0
1.01 0. 79
1. 025 1. 02
1. 05 1. 29
1.20 2.37
2.0 6. 56
4.0 16.43
6.0 26. 29
9.0 36. 14

10.0 46. 0
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Table B-1gives values oi the factor w b as a function of C . For C greater

than 1. 2, the solution for Ib is very close to

62 2
b ( C -) C r 1.2 (B-7)

b 2D r 3 r

For many artery structures, v -1 cm/sec, 6 - 0. 02 cm, and D' - 5 (10- 5)

cm2/sec. If C r equaled 1. 2, then Ib would be on the order of 2 cm in length.
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